Math 249 Lecture 25 Notes

Daniel Raban

October 20, 2017

1 Species of Graphs

1.1 The species of connected graphs

Let G(S) = {graphs with vertex set S} be the species of graphs. The generating function
weighting the edges is

G(z;t) = i(l + t)(g)%?.
n=0 ’

Let G¢o(S) = {connected graphs with vertex set S} be the species of connected graphs.
By convention, we say that an empty graph is not connected. Then the isomorphism

G FEoGe
is the statement that a graph is the union of its connected components. This gives us that

G(x;t) = eCel@it)
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Gola;t) = log(G(x31)) = log (Z(l + t>(2)n;)
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This might seem messy, but it is actually pretty easy to compute, especially by computer.
Let’s write out a few terms:
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In each term x™, the coefficient of the least power of ¢ is the number of trees on n vertices.
This is because a tree is the connected graph with the fewest edges (if you can remove an
edge and stay connected, then your graph has a cycle).



1.2 Rooted trees and Cayley’s formula

Definition 1.1. A rooted tree is a tree graph with a distinguished vertex called the root.
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Definition 1.2. A rooted forest is a graph where the connected components are all rooted
trees.
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Theorem 1.1 (Cayley’s formula). There are n"~2 trees on n labeled vertices.

Proof. Cayley’s formula is equivalent to saying that there are n”~! rooted trees. Define

the species T'(S) = {rooted trees on S}. The species F'(S) = {rooted forests on S} satisfies
the isomorphism
F=2FEoT.

To get rooted trees on a set .S, we can pick a vertex in S, make it the root, and make its
neighbors the roots of the components in a rooted forest. Denoting X; as the indicator
species of 1, this gives us the species isomorphism

TXF= X1<E o T),
which gives us the identity
T(z) = ze’®.

Rearranging this, we get that
T(z)e T® = g,

which says that T'(x) is the compositional inverse of ze 2.1

! At this step, we can the find the coefficients using the Lagrange inversion formula, but instead we will
deduce the Lagrange inversion formula as a generalization of this story.



We want to show that
n
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Let’s say we have guessed the answer. This seems very similar to
o
n xn
> "
n!
n=0

which is the exponential generating function for M(S) = {maps S — S}. In fact, the
generating functions satisfy
T (x) = M(s) — 1,

so proving this identity will be sufficient for the proof.
Write a function S — S as a directed graph. If we start at any vertex and follow arrows,
we will eventually get to a vertex in a cycle. So M is a composite species

M=ZPoT.
Since P(z) = {1, this gives us that
1
M —
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Differentiating T'(z) = ze”®), we get
T'(z) = €7@ + 27T () = 7@ 4 T(2)T' ().
(1 = T(2))T'(z) = 7@
(1 —T(x))aT' (z) = zeT™@ = T(x).

So we get that

T(z) 1
T'(x) = = —1=M(z)-1
@) = ) ~1=T@) (@) =1,
which is what we wanted. So
t, =n""L O

1.3 Plane trees

Definition 1.3. A plane tree is a tree where there is a linear ordering on the children of
each vertex.



Example 1.1. The following two rooted plane trees are not isomorphic as plane trees,
even though they are isomorphic as trees:
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Let T),(S) = {plane trees on S} be the species of plane trees. Plane trees have “no”

automorphisms, so
xn
1) = St = Y et
n

n

where ¢, is the number of unlabelled plane trees on n vertices.
If we take a rooted plane tree and take out the root, we get a forest of rooted plane
trees but linearly ordered. This produces the species isomorphism

T, 2 X(LoT,).

The corresponding identity fo generating functions is

1

T,(z) = 3———

p(x) xl _Tp(z)v
which gives us the quadratic equation

Ty(x)* — Tp(z) + . = 0.

Solve this equation to get

Which solution is the correct one? We need to have a 0 constant term (i.e. 7,,(0) = 0), so
we take the minus one. So

@) = V1% v21—493 Slly <1£2> (—dz)™.



